Midas软件实战技巧50条(快速提高midas水平) - midas|midas civil|迈达斯 - 桥言桥语-桥梁网-桥梁工程师之家|我们致力于为桥梁爱好者提供动力!

Midas软件实战技巧50条(快速提高midas水平)
2015-10-21 21:08:08   来源:   评论:0 点击:

如何利用板单元建立变截面连续梁(连续刚构)的模型?建立模型后如何输入预应力钢束?使用板单元建立连续刚构(变截面的方法)可简单说明如下
能划分网格?
答: 一个PART必须是一个封闭区域,请检查一下区域是否封闭。另外与其它线段无连接的端点显示为蓝色。
42、在MIDAS/Civil的移动荷载分析中,如何得到发生内力最大值时同时发生的其他内力?
答: 移动荷载作用下,查看梁单元的最大内力和同时发生的其他内力的步骤如下:
第一步,首先在主菜单的分析>移动荷载分析控制对话框中,在单元输出位置的杆系单元中选择"标准+当前内力",如果只选"标准"项则只输出最大值。如果想要查看梁单元的应力,则需要选择下面的"计算组合应力项"。
第二步,在运行分析后,选择主菜单的结果>分析结果表格>梁单元>内力,在生成的表格中按鼠标右键,在弹出的关联菜单中选择"查看最大值"。然后选择相应的最大值,按"确认"键,则将输出同时发生的其他内力。
43、有关MIDAS的非线性分析控制选项?
答: 在MIDAS的静力分析中,有三个地方有非线性分析控制选项。即主控数据中的迭代选项、非线性分析控制中的迭代选项、施工阶段模拟中的非线性分析迭代选项。
其中主控数据中的迭代选项适用于有仅受拉、仅受压单元(包括此类边界)的模型。既模型中有仅受拉、仅受压单元(包括此类边界)时,对这些单元的非线性迭代计算由该对话框中的控制数据控制。
非线性分析控制中的迭代选项适用于几何非线性分析。当做几何非线性分析时,在模型中即使有仅受拉、仅受压单元(包括此类边界),对这些单元或边界的控制仍由非线性分析控制中的迭代选项。
施工阶段模拟中的非线性分析迭代选项,仅对施工阶段中的几何非线性分析起控制作用,模型中有仅受拉、仅受压单元(包括此类边界)时,在施工阶段分析中,这些单元或边界的控制仍由施工阶段模拟中的非线性分析迭代选项控制。
如果在施工阶段模拟中不做非线性分析,但施工阶段模型中包含了仅受拉、仅受压单元(包括此类边界)时,则主控数据中的迭代选项起控制作用。
如果在分析>非线性分析控制对话框中定义了非线性迭代控制数据,则施工阶段的postcs阶段的几何非线性分析控制由非线性分析控制中的迭代选项控制。
在MIDAS的动力分析中,非线性控制选项在定义时程分析荷载工况对话框中定义。
44、MIDAS/Civil施工阶段分析控制对话框中的索初拉力控制选项?
施工阶段分析控制对话框中的索初拉力控制选项有两种,体内力和体外力。该选项仅适用于索单元,不适用于预应力钢束。
在预应力荷载中给索单元加初拉力后做施工阶段分析时,如果选体内力程序中将以一定的变形量的方式加载到单元中,犹如给单元加一温度荷载一样。索内最终张力与索两端的锚固条件有关。当索两端完全锚固时,索内张力为所加初拉力;当索两端完全自由时,索内张力为零(可以类比加温度荷载时的自由伸缩)。
在预应力荷载中给索单元加初拉力后做施工阶段分析时,如果选体外力程序中将做为荷载加载在索两端。当该阶段只有该索力作用时,索的张力不变;当该阶段有其他荷载作用或下一阶段有其他荷载作用时,索力会有相应变化。
斜拉桥的施工阶段分析,一般选体内力。悬索桥的分析与悬索桥的类型(自锚式、地锚式)以及施工工序有很大关系,用户应根据工序和经验选择相关选项。
非施工阶段分析时,对于斜拉桥和悬索桥的初拉力程序内部按体内力进行处理。
45、MIDAS/CIVIL中有关斜拉桥施工中的索力调整问题?
在CIVIL中可在预应力荷载中将不同阶段的索力定义为不同的组。
然后加载在不同施工阶段中。
在施工阶段分析控制对话框中的索初拉力选项中选择体外力。在5.9.0版本中增加了体外力的两个选项,“添加”和“替换”。当选择添加时,索的初拉力为累加;当选择“替换”时,表示将索力调整到某值(该阶段被激活的索力荷载值)
46、问:在MIDAS中如何计算自重作用下活荷载的稳定系数(屈曲分析安全系数)?
答:稳定分析又叫屈曲分析,所谓的荷载安全系数(临界荷载系数)均是对应于某种荷载工况或荷载组合的。例如:当有自重W和集中活荷载P作用时,屈曲分析结果临界荷载系数为10的话,表示在10*(W+P)大小的荷载作用下结构可能发生屈曲。但这也许并不是我们想要的结果。我们想知道的是在自重(或自重+二期恒载)存在的情况下,多大的活荷载作用下会发生失稳,即想知道W+Scale*P中的Scale值。我们推荐下列反复计算的方法。
步骤一:先按W+P计算屈曲分析,如果得到临街荷载系数S1。
步骤二:按W+S1*P计算屈曲,得临界荷载系数S2。
步骤二:按W+S1*S2*P计算屈曲,得临界荷载系数S3。
重复上述步骤,直到临街荷载系数接近于1.0,此时的S1*S2*S3*Sn即为活荷载的最终临界荷载系数。

相关热词搜索:midas 迈达斯

上一篇:使用midas计算时经常遇到的问题
下一篇:抗扭惯矩的几种计算方法-midas截面特征计算器

分享到: 收藏